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Abstract Wireless camera networks provide a unique opportunity for collabo-
rative surveillance. Performance evaluation and optimization of cam-
era networks, however, has seldom been addressed. This chapter fills
this gap by detailing an approach by which individual cameras and a
whole network of cameras can be simultaneously optimized in terms
of Pareto efficiency using multi-objective optimization of performance
metrics. Experiments are performed on a set of 37 wireless cameras
from a testbed built from the ground up at the University of California
at Riverside.
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1. Introduction

We describe the development and optimization of a new laboratory
called VideoWeb to facilitate research in processing and understanding
video in a wireless environment. While research into large-scale sensor
networks has been carried out for various applications, the idea of mas-
sive video sensor networks consisting of cameras connected over a wire-
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less network is largely new and relatively unexplored. The VideoWeb
laboratory entails constructing a robust network architecture for a large
number of components, including cameras, wireless routers and bridges,
and video processing servers. Hardware and equipment selection needs
to take into account a number of factors, including durability, perfor-
mance, and cost. In addition, VideoWeb requires a number of software
applications including those for data recording, video analysis, camera
control, event recognition, anomaly detection, and an integrated user
interface.

Challenges for the design of VideoWeb include creating a wireless net-
work robust enough to simultaneously support dozens of high-bandwidth
video cameras at their peak performance, providing power and connec-
tivity to cameras, building a server farm capable of processing all the
streaming data in real-time, implementing a low-latency control struc-
ture for camera and server control, and designing algorithms capable of
real-time processing of video data.

This chapter is organized as follows: In Section 2 we cover related
work and contributions. Section 3 discusses the requirements and spec-
ifications used in designing the system and discusses the technical chal-
lenges and solutions for actual implementation. Section 4 describes the
VideoWeb testbed. Section 5 delves into characterizing the performance
metrics from which to evaluate the system. Section 6 concludes with
closing comments and lessons.

2. Related Work and Contributions

While many camera network platforms have been proposed [1–3],
including systems with calibrated [4] or customized camera hardware
nodes [5–8], there has been little discussion on how to one should go
about in configuring or evaluating the performance of the network that
they’ve built. This chapter makes the following contributions:

1 We detail useful guidelines in designing a large-scale wireless cam-
era network with regard to selecting the hardware, software, and
architecture

2 We perform Pareto optimization of 37 individual cameras in the
network with respect to performance metrics such as frame rate,
resolution, compression, and lag time

3 We perform simultaneous optimization for a set of 12 outdoor wire-
less cameras in order to gain insight into the performance trade-offs
when using a large network under real-world conditions
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3. Building the Camera Network

3.1 Choosing the Type of Network

There are many types of camera networks (e.g., wired vs. wireless,
multi-hop wireless, distributed vs. central processing), but the most im-
portant factor in deciding what kind of network to build is determining
the primary application. For instance, if a network’s primary concern is
surveillance (where reliability may be paramount, e.g., there may be a
legally or contract-mandated uptime), a hard-wired network may be the
only way to satisfy said requirements. A wireless network, on the other
hand, provides more freedom and allows cameras to go where hard-wired
cameras cannot (restricted only by power source).

3.2 Choosing the Right Camera

Choosing the wrong camera can be a costly mistake when building
a large video network. When selecting a camera, a number of factors
should be taken into consideration. Besides cost, these may include:

Wired vs. Wireless cameras. Deciding between a wired or
wireless camera is often a trade off between whether or not speed
and reliability can be sacrificed in order to gain flexibility and free-
dom in placement. Cameras which will connect to the processing
location (whether it be a central or distributed server) with ded-
icated wire connections (e.g., Ethernet, audio/video cables) excel
in providing improved speed and reliability. This comes at the cost
of restricting installation locations to those which can be reached
via physical cables and installation may prove to be very labor-
intensive, expensive, or simply unfeasible. Wireless cameras on
the other hand allow greater freedom in placement as well as of-
fering the opportunity of mobility (in the case of non-stationary
cameras, e.g., robots, field sensors), but may sacrifice speed, relia-
bility, and/or security.

IP vs. Analog CCTV. Digital vs. analog in the context of
video cameras is often an issue of convenience. Traditional ana-
log closed-circuit TV (CCTV) systems are often simpler and more
cost-efficient, but search and retrieval of data is cumbersome and
any applications beyond surveillance and monitoring may be awk-
ward or require dedicated and difficult to customize processing
systems for each application. IP systems, on the other hand, can
be more costly and/or complex, but output digital streams easily
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processed on computers and can even be accessed anywhere in the
world simply by putting them on an Internet-accessible connection.
If the video streams will be subject to constant or routine process-
ing, analysis, or retrieval, IP cameras offer greater convenience
and all the benefits of cheap digital storage, but may require ad-
ditional network and software training for those only familiar with
traditional CCTV systems.

Single-hop vs. Multi-hop wireless. If wireless cameras are
to be used, there are two primary ways they can reach their pro-
cessing/storage destination: via a single-hop connection (cameras
connect directly to wireless router/receivers) or via multi-hop con-
nections (cameras connect to other cameras and pass on data be-
fore reaching the router/receiver). Multi-hop networks impose ad-
ditional complexity and hardware as well as increased latency, but
gain flexibility and wireless coverage by essentially turning every
camera into a repeater node; these are more-suited for cameras
with on-board processing capabilities. Single-hop networks are rec-
ommended if it is viable (i.e., network routers can be installed in
locations in which all cameras can reach) for purposes of lower
latency and reduced hardware requirements.

External vs. On-camera processing. Whether or not to per-
form processing on-camera or deferring processing to external com-
puters/systems is impacted by camera capability/programmability
and network latency and bandwidth. For instance, a multi-hop
network may be too slow to permit active tracking if video needs
to first be passed through several sensors before reaching a pro-
cessor, whose control commands then need to be relayed across
several more sensors before the camera ever receives the command
to “pan left”. On-camera processing can also reduce bandwidth
consumption of the network (e.g, transmitting only areas of in-
terest as opposed to full-frame video), while external processing
allows a greater range of control and processing power.

Pan/Tilt/Zoom (PTZ) vs. Static cameras. As the name
implies, PTZ cameras offer active panning, tilting, and/or zoom-
ing capabilities whereas static cameras retain a permanent fixed
field of view and orientation. PTZ cameras have the advantage of
being able to cover larger areas (as a whole) and can zoom in or
out to obtain better views of a scene as appropriate. This comes
at the cost of increased complexity by requiring (manual or auto-
mated) control in order to take advantage of this capability. Static
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cameras on the other hand, are often less expensive and provide
consistent scene coverage, but may require more installations to
cover the same area as PTZ cameras and may do so with com-
promised quality (camera placement is often a balance between
sacrificing area coverage for close-up detail).

Pan/Tilt/Zoom speed and magnification. If PTZ cameras
are to be used, the responsiveness of such commands should be
taken into consideration when choosing between models, as some
cameras may respond or move too slowly to be useful for applica-
tions such as active tracking. Since these specifications are often
omitted by camera manufacturers, it is strongly recommended to
trial cameras and testing if their PTZ speed is adequate before pur-
chasing. In addition, the level of optical zoom may be important
depending on the detail required for specific applications and the
camera’s physical distance from the scene. For most applications,
digital zoom is worthless (at the raw capture stage) and should
only be done in data processing.

Progressive vs. Interlaced cameras. All other things equal,
progressive cameras should be chosen over interlaced cameras where
possible. While interlaced cameras can usually perform on-camera
de-interlacing to avoid the combing artifacts inherent to interlaced
video, such techniques tend to wash out fine detail for static objects
and result in ghosting effects on moving objects ones (the alterna-
tive, processing only every other line in the video, also effectively
halves the vertical resolution). There may be some exceptions
to choosing a progressive camera, such as when a CMOS-sensor
progressive camera has a rolling shutter which is so slow that its
video exhibits noticeable skew on moving objects (also known as
the “jello effect” as often seen in handheld cameras when the cam-
era is panned too quickly), but even this may be preferred over the
combing or ghosting artifacts from interlaced video.

Bandwidth: video format, resolution, and frame rate. Res-
olution and frame rate go hand in hand as they will (in addition
to video format) directly affect the bandwidth required for trans-
mitting and storage required for archiving. Typical video cam-
eras offer VGA resolution (640×480) at 30 frames per second,
but newer high-definition (e.g., 720p or 1080p) cameras are be-
coming more readily available. While 640×480 resolution may be
usable for many computer vision processing applications, those in-
terested in face recognition (or better yet, face reconstruction) may
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find VGA to be particularly challenging to work with. Networks
with particularly demanding requirements may want to consider
specialty cameras, e.g., super high-resolution cameras, hardware-
stitched 360 ◦ cameras, or even high-speed cameras, though these
tend to demand a premium. The output format of the camera will
also affect image quality; in addition to the traditional and easy-
to-decode Motion JPEG codec (essentially a large series of JPEG
images concatenated together), many cameras also offer MPEG-
4 output for reduced bandwidth and/or higher quality using the
same bandwidth via interframe compression. Decoding the video
for custom-built applications may be more difficult with MPEG-
4 however, and video artifacts caused by stream corruption (e.g.,
network congestion, dropped packets) may appear less appealing.

3.3 Choosing and Configuring the Network
Hardware

The network hardware has a single purpose: to connect the cameras to
the processing location(s) and to be as transparent as possible. Factors
to consider when selecting network hardware include:

For Wired networking. If IP cameras are being used, it is
recommended to install the highest-rated network cable available
(Cat-6 ethernet cable as of this writing) which can still reach its
destination (generally 100 meters for gigabit ethernet or 55 meters
for 10-gigabit ethernet using Cat-6a). The cost difference may be
marginal (over Cat-5/5e, for instance) while providing overhead
in robustness in the event that newer higher-bandwidth cameras
are installed to replace aging cameras. Ethernet extenders may be
required if cable lengths exceed cable specifications.

For Wireless networking: 802.11g vs. 802.11n vs. RF.
If wireless IP cameras are used, it will likely be a choice between
802.11g and the newer 802.11n. If the choice is available (e.g.,
wireless bridges are being used to turn an ethernet camera into
a wireless camera), 802.11n from our experience is a major up-
grade from 802.11g for both increasing network throughput and
signal strength. How much of an improvement may be influenced
by congestion in the operating frequency range due to other wire-
less networks in the area. Determining a selection between analog
RF transmitters, on the other hand, can be more difficult as the
performance will vary more widely based on the power, frequency,
and data being transmitted, as well as the environment. It is
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Figure 1.1. 37 camera locations were selected for complete outdoor coverage of the
14,300 square foot second floor of Engineering Building Unit II at the University of
California, Riverside. Locations were manually selected and evaluated to ensure that
usable fields of view were available for every square inch of the building from at least
two viewpoints.

recommended to get a sample transmitter and to test each loca-
tion cameras will be installed; this goes the same for wireless IP
cameras, though wireless repeaters can be more-easily installed to
extend ranges. In addition, selected wireless routers should offer
(at minimum) gigabit capabilities, especially if a large number of
cameras are expected to connect to it.

4. The VideoWeb Wireless Camera Network

The VideoWeb testbed is a network of 80 (37 outdoor and 43 indoor)
wireless cameras. Goals in building the network included:

the maximum coverage of the building’s exterior floor (see Figure
1.1)

the capability to perform real-time surveillance from a central or
distributed server through a web interface
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Figure 1.2. Overall architecture of the VideoWeb network. Top down: a single
interface is used for direct control of any server/camera and high-level processing
(e.g., user-defined face recognition). The server connects to a switch which hosts a
database and joins two sets of servers: a series of mid-level (e.g., feature extraction)
and low-level processors (e.g., detecting moving objects). The switch connects to
routers which communicate with wireless bridges connected to the IP cameras.

the capability for active tracking of subjects through the network

the capability to control and perform arbitrary processing on any
subset of camera feeds

technological longevity of the system and robustness to outdoor
weather

With these objectives in mind, the following design decisions were made:

wireless connectivity for all the cameras for flexible placement and
reduced installation costs
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Figure 1.3. Sample video streams from the VideoWeb network.

pan/tilt/zoom IP cameras are selected to allow active tracking as
well as permit easier integration software-wise (control and stream-
ing is all handled via simple HTTP commands)

wireless bridges are used to provide wireless connectivity to the
cameras for upgradability (e.g., advancements in wireless proto-
cols) and are configured into a single-hop network to reduce net-
work latency (the central server approach does not require on-
camera processing)

tiered processing architecture for simplifying the delegation of con-
trol and processing responsibilities across servers

a 32-server processing rack with expandability from 128 cores to
256 (using dual socket motherboards)

The completed architecture of the network is seen in Figure 1.2 and
sample video streams are shown in Figure 1.3. In-depth details about
the network can be found in [9].
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5. Experiments for Performance
Characterization and Optimization of the
Video Network

5.1 Optimizing Camera Configuration

Depending on the task or application, there are numerous “optimal”
ways to configure a network. For instance, maximizing video resolu-
tion and quality may be paramount for biometrics, particularly in face
recognition where a large number of pixels on the face is beneficial to
identifying features. Surveillance and alarm systems, on the other hand,
may find reliability more important. For instance, it may be more im-
portant that every moment is recorded with minimal skipping (not only
for evidence in the event of an incident, but also because security appli-
cations often employ vision-based motion detection). Object tracking in
turn, may benefit most by sacrificing resolution in exchange for a high
sustained frame rate.

Configuring the network may consist of changing camera parameters
(e.g., resolution, compression) as well as physical network parameters
(e.g., number of cameras per bridge, number of bridges per router, num-
ber of routers per square foot). The later is helpful in introducing a
metric for minimizing labor and monetary cost. We define 5 metrics for
measuring camera network performance, the first two of which are used
as configuration parameters.

1 Resolution (in pixels) - This measures the size of each video frame
in pixels (the higher, the better). This parameter consists of 4 lev-
els on the cameras (704×480, 704×240, 352×240, and 176×120).

2 Video compression - This parameter represents the amount of lossy
video compression applied to the video by the camera. For M-
JPEG streams on the cameras, this represents JPEG compression
and ranges from 0 to 100 (the lower, the better). In our experi-
ments, we test 5 of these levels (0, 20, 30, 60, and 100).

3 Average frame rate (in frames per second) - This measures the
number of complete frames received per second, averaged over the
duration of a measurement trial (the higher, the better). The
frame rate may range from 0 to a maximum frame rate of 30 on
the cameras.

4 Standard deviation of frame rate - This measures the consistency
of the video. For instance, there may be two video streams both
20 frames per second each, but the first may output a constant
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Figure 1.4. Measurement comparison matrices for 3 individual cameras. While cam-
eras may exhibit variable performance even when using the same configurations, some
configurations may be inherently better than others and exhibit similar performance
across the network. To discover these configurations, 100 trials are performed on each
camera under a variety of parameter configurations (i.e., resolution and compression)
and each recorded measurement is compared for Pareto efficiency against the other 99
trials. This results in a symmetric matrix where vertical and horizontal axes indicate
the measurements Mi and Mj , respectively (i.e., the top-leftmost square in each ma-
trix indicates the relationship of M1 against M100). Red indicates that a particular
Mi is inferior to a particular Mj , green indicates superiority, and a solid horizontal
yellow line denotes rows which are completely Pareto-efficient (i.e., either superior or
non-inferior against all other 99 trials).

20 frames per second while the second video may be sporadic and
go from 30 to 0 to 10, back to 30 and so forth (but still average
to 20 in the end). This metric is useful in evaluating the stability
of the video (the lower the deviation, the better) and is measured
by recording the delay between every two frames (in seconds with
millisecond resolution) and calculating the standard deviation.

5 Longest lag time between two complete frames (in milliseconds) -
This metric records the longest amount of time taken between any
two consecutive frames (the lower, the better). This is insightful
for evaluating a video stream’s reliability (that is, it measures the
longest amount of time a camera is “blind”). In addition to a
depressed frame rate, this may be attributed to dropped/partial
frames by the camera or data corruption/dropped packets under-
gone during transit.

5.2 Multi-objective Optimization Using Pareto
Efficiency

We use the concept of Pareto efficiency to define which configuration
of parameters is “better” than another. While this does not always tell
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a user which configuration should be used for a particular application,
it serves to reduce the large number of possible configurations by show-
ing which of those are usually “inferior”; a user only has to consider a
configuration from the (potentially) much smaller Pareto set rather than
every possible combination.

Inferiority and Non-Inferiority. Let M1 be a vector of mea-
surements of certain metrics for a camera and let M2 be another trial
of measurements on the same camera, but under a different parameter
configuration. M1 is said to be inferior to M2 if and only if:

every measurement in M2 is equal to or outperforms the corre-
sponding measurement in M1

one or more measurements in M2 outperform the corresponding
measurements in M1

“Outperforms” is metric-specific and means “greater than” or “less than”
depending on how the metric is defined (e.g., a higher frame rate outper-
forms a lower frame rate and a lower lag outperforms a longer lag). M2

is said to be superior to or dominates M1 if M1 is inferior to M2. Finally,
M1 and M2 are both said to be non-inferior if neither is superior nor
inferior to one another.

In order for a measurement Mi to be Pareto-efficient (amongst a
set), it must be non-inferior to every other measurement in that set.
That is, it possesses at least one advantage over every other measurement
when compared one-on-one (e.g., M1 has higher frame rate against M2,
lower lag against M3, ..., higher resolution than Mn). The Pareto set
is the set of all Pareto-efficient measurements and ideally, allows a user
to discard a large percentage of inferior parameter configurations from
consideration when setting the cameras.

Data Collection. Data collection consists of varying the resolu-
tion and compression parameters and recording measurements from the
cameras during streaming. Two tests are performed: for individual op-
timization and simultaneous optimization. For individual camera opti-
mization, each of the 37 cameras is streamed individually [9]. For simul-
taneous optimization of the network, a set of 12 outdoor cameras located
in a courtyard are simultaneously configured and streamed. This allows
us to receive insight into the strengths and limitations of the cameras
individually as well as from the network as a whole. In total, we iterate
through 4 resolutions (704×480, 704×240, 352×240, and 176×120) and
5 levels of compression (0, 20, 30, 60, and 100) each. Five measurement
trials are captured for each of the cameras per configuration (100 trials
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100% of cameras: 704× 480/0% 97% of cameras: 704× 240/0%

94% of cameras: 704× 480/20% 91% of cameras: 352× 240/0%

Figure 1.5. Top 4 dominating camera configurations as chosen by the 37 cameras.
Graphs are ordered by the percentage of cameras in which they were Pareto-efficient.

total per camera). Each trial consists of streaming from the cameras for
3 minutes.

Camera footage is tested at 5 various points in the day across all
cameras. This exposes the data to a variety of video footage ranging
from bright open areas with upwards of 20 moving people in the scene,
to dark and grainy footage of cameras monitoring lonely halls.

After data collection is completed, each camera is optimized individu-
ally to minimize camera, bridge, or router bias. For the simultaneous op-
timization, the average performance of all 12 cameras as a whole is used
for optimization. This is done in O(n2) via exhaustive search (where n is
the number of trials to compare), comparing each measurement to every
other measurement on the same camera. With 20 configurations and
5 trials per configuration, each camera produces a symmetric 100×100
matrix. The resolution/compression pairs which result in the Pareto-
efficient measurements for each camera are later aggregated against the
entire network.
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Figure 1.6. Pareto efficiency of configurations when cameras stream independently.

Figure 1.7. Pareto efficiency of configurations when all cameras stream simultane-
ously.

5.3 Evaluation Results

After over 100 hours of data collection at varying times of day across
two weeks, the Pareto sets for all 37 individual cameras and 12 simulta-
neous are calculated (see Figure 1.4 for sample matrices). Considering
only configurations in the Pareto sets eliminates (on average) approxi-
mately half of the tested configurations as inferior and redundant.

After aggregating the resolution/compression parameters of the Pareto
sets for the entire camera network, we found that, surprisingly, every
configuration tested was in the Pareto set for at least one camera. This
suggests that there is no global network-wide consensus that any camera
configuration is inferior to any other; every (tested) setting was Pareto
efficient for at least some camera. Calculating the percentages of the
Pareto set memberships, however, reveals that the cameras tend to ex-
hibit a “preference” for certain configurations over others (see Figures
1.5 and 1.6). This is in line with the previous observation that roughly
half of the tested configurations are not preferred (less than a majority
agreement between the cameras).
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The simultaneous optimization test, however, reveals that bandwidth
and network limitations play a larger role in overall performance and
that configurations with high Pareto efficiency percentages in individual
testing (such as 704×480 and 0 compression) achieve Pareto efficiency in
only 20% of the trials when this setting is applied for all cameras (Figure
1.7). Simultaneous optimization also shows us better compromises when
a large number of cameras stream saturate the network (e.g., 704× 240
and 20 compression).

It is not surprising to see higher percentages on configurations with ei-
ther the maximum resolution or minimal compression since they already
optimize at least one metric by definition. However, configurations such
as 176×120/60% and 704×240/20% reveal local optimum which is po-
tentially very useful for some practical applications of the video network.
Using a more fine-tuned set of compression levels, we would likely be able
to find more such points, aiding in the creation of a useful set of presets
for specialized applications.

The presented multi-objective approach can also be used to optimize
network parameters for specific applications. This can be done by quan-
tifying application performance (e.g., face detection rate, face recogni-
tion rate, smoothness of tracked objects trajectories) and adding them
to the multi-objective metrics.

6. Conclusions

We have designed an software-reconfigurable architecture for a wire-
less network of a large number of video cameras and implemented a
working system by building the servers, installing the cameras, writ-
ing the software, and configuring the network to support it. Further,
we gained insight into configuring the network’s cameras by defining a
set of metrics and discovering Pareto-efficient camera configurations by
performing multi-objective optimization on a large volume of real data
recorded by the system.

The idea persists that if one has a network of cameras rated at 30
frames/second (FPS), one will be able to obtain the said 30 frames/second
regardless of network configuration or parameters. Though this may be
true in controlled test environments, the performance expectation should
not be so optimistic for real-world wireless implementations. Even us-
ing the most preferred Pareto-efficient configurations on a non-congested
network, it is shown that frame rates will most certainly suffer and that
trade-offs must be made.

During a large workshop hosted in the building with a large number
of wireless Internet users, however, it was observed that frame rates
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of the cameras would periodically drop and we later found that these
drops coincided with breaks given during the workshop. Suspicious that
a number of open and local 802.11g networks may be congesting our
network, a cluster of bridges were upgraded from 802.11g to 802.11n. In
daily usage, frame rates were seen to reach up to 20 FPS for even the
most bandwidth-intensive configurations (such as 704×480 resolution
with 0% compression) where they were previously achieving typically
only 3 FPS (even when other bridges in the network were not in use).
While this makes a case for upgrading to 802.11n, this also suggests that
network congestion from other networks may play a large role in frame
rates and that networks may wish to operate in a dedicated frequency
range.

In situations when even hardware upgrades can still not achieve suf-
ficient performance, however, we would like to emphasize that partial
data is still important. Rather than having algorithms which assume
that the data consists entirely of complete video frames (and are only
capable of processing such frames), real-time computer vision algorithms
should take advantage of as much information as is available to them;
the constant stream of partial frames which may only be missing the
last few rows of data can still be tremendously useful for a number of
applications.
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